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Abstract
Traditional image compression algorithms have been rel-
atively mature, such as JPEG(Wallace 1991), JPEG2000.
With the development of deep learning, convolutional
neural networks have been leveraged in image compres-
sion. Trit-plane coding is one of the best practices of
CNN in image compression. It enables deep progres-
sive image compression, but it cannot use autoregressive
context models. In this paper, we propose the attention-
based trit-plane coding (ATC) algorithm to achieve pro-
gressive compression more compactly. First, we intend to
develop the attention-based rate reduction module to ac-
curately estimate the trit probabilities of latent elements
and thus encode the trit-planes compactly. Second, we
plan to develop the attention-based distortion reduction
module to refine partial latent tensors from the trit-planes
and improve the reconstructed image quality. Third, we
aspire to propose a retraining scheme for the decoder to
attain better rate-distortion tradeoffs. Extensive experi-
ments show that ATC outperforms the baseline trit-plane
code significantly. We plan to evaluate our model using
three datasets, which will be introduced in more detail in
the plan section.

Introduction
With the development of the digital information age, the
amount of data faced by people has increased dramatically,
and more and more attention has been paid to the research of
data compression technology. Image compression has been
one of the important topics. Traditional image compression
is based on the theory of information theory and digital sig-
nal processing technology, through the elimination of redun-
dancy between digital image pixels to achieve image com-
pression processing. Traditional image compression algo-
rithms have been relatively mature, such as JPEG (Wallace
1991), JPEG2000 (Skodras, Christopoulos, and Ebrahimi
2001), and so on. However, with the in-depth study and ap-
plication of these traditional image compression methods,
many drawbacks of these methods have been found, such as
the serious square effect of recovered images at high com-
pression ratios, and the characteristics of the human eye’s
visual system are not easy to be introduced into the tradi-
tional methods.
Copyright © 2024, Association for the Advancement of Artificial
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Deep learning has grown rapidly in recent years, people
began to explore deep learning and successfully applied it
to Image Compression. CNNs have been developing rapidly
in the image field, especially in the field of computer vi-
sion, and the sparse connection and parameter-sharing char-
acteristics of CNN convolutional operation make CNNs ad-
vantageous in image compression. These two features of
convolutional neural networks better reduce the computa-
tional complexity and allow training towards deeper and
better network structures. Using these modules, they pro-
vide decent rate-distortion (RD) results. Several innovations
have been made to improve the RD performance, includ-
ing differentiable quantization approximation (Agustsson
et al. 2017; Ballé, Laparra, and Simoncelli 2016), hyper-
prior (Ballé et al. 2018), contextual models (He et al. 2021;
Mentzer et al. 2018; Minnen, Ballé, and Toderici 2018) and a
priori models (Cheng et al. 2020; Cui et al. 2021), as well as
bit Rate-Distortion Optimization (RDO) (Wang et al. 2022),
frequency-aware transform block (FAT) (Li et al. 2023), and
QPressFormer (Luka, Negrel, and Picard 2023). Therefore,
deep image codecs are better and more competitive than tra-
ditional codecs. better and more competitive.

Most image compression methods are non-progressive.
Therefore, these methods expect to have the complete com-
pressed image available for decoding. However, in many
cases, making the entire file available is a challenge. As
a result, the user or system experiences some delay before
reconstructing the image for viewing or further processing.
Progressive compression (Liu et al. 2021) solves this prob-
lem by allowing the decoder to obtain an initial preview
with even a small portion of the data. Afterward, the de-
coder can reconstruct a better-quality image by receiving the
rest of the bits. However, relatively few deep codecs sup-
port such progressive compression or scalable coding (Ohm
2005). Many codecs require multiple pieces of training of
their networks to achieve compression at as many bit rates
as possible (Ballé et al. 2018; Cheng et al. 2020). Some
codecs support variable rate coding (Cui et al. 2021; Yang
et al. 2021), but they should generate multiple bitstreams
for different bitrates, and it is more efficient to truncate a
single bit stream for different bit rates (Lee et al. 2022; Lu
et al. 2021). Besides, these models cannot use the context
model for encoding and decoding (He et al. 2021; Lee, Cho,
and Beack 2018). They assume that the codec contexts are
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Figure 1: Image Compression Framework

synchronized, but in reality, these potential elements are in
different states. Therefore new context models need to be
proposed in order to solve this problem. Meanwhile, we no-
ticed that the attention mechanism helps to obtain context
information. So, we intend to implement a context image
compression algorithm based on the attention mechanism to
present better compression results.

In this paper, we propose the attention trit-plane coding
(ATC) algorithm for progressive image compression, which
introduces novel context models to address the limitations
of existing models. Based on our observations, the current
models face limitations in effectively utilizing the context
model for encoding and decoding. These limitations arise
from the assumption that the codec contexts are synchro-
nized, which does not align with the reality where these po-
tential elements often exist in different states. This discrep-
ancy highlights the need for the development of new context
models to address this gap.

To overcome this problem, we leverage the attention
mechanism, which has proven effective in obtaining con-
text information, to enhance our compression algorithm. By
incorporating the attention mechanism into the ATC algo-
rithm, we aim to achieve better compression results and im-
prove the overall performance of the image compression
process.

Our proposed ATC algorithm takes advantage of the atten-
tion mechanism to selectively focus on informative regions
of the image during the encoding and decoding process. This
allows us to allocate more bits to important regions while
reducing the bit allocation for less significant regions, re-
sulting in improved compression efficiency. By considering
the contextual information in a more dynamic and adaptive
manner, our algorithm can effectively handle the variations
and complexities present in real-world image data.

Experiments and evaluations are conducted to validate the
effectiveness of the proposed ATC algorithm. The results
demonstrate that our approach outperforms existing meth-
ods in terms of compression ratio, and we use RD point
(Rate-Distortion point) to evaluate the trade-off between

compression rate and distortion

Related Work
Early image codecs mainly used lossless compression to
preserve the original image information but required a large
amount of storage space and transmission bandwidth. At the
same time, image compression also mainly relied on fixed
bit rates for compression, which meant that the same bit rate
was used for compression regardless of the image content.
To achieve variable bit rate compression, multiple training
sessions were conducted at the cost of time and memory.

With the rapid development of deep learning technology,
new breakthroughs have been made in coding and decod-
ing, and variable bit rate compression technology has also
been further improved. Some research works use deep neu-
ral networks for coding and decoding, achieving signifi-
cant progress. Some research works use convolutional neu-
ral networks (CNN) to encode and decode video frames to
achieve more efficient compression. For example, an end-
to-end image compression framework based on CNNs con-
sists of a non-linear analysis transform (encoder)(Ballé, La-
parra, and Simoncelli 2016)., a uniform quantizer (multi-
binary rounding), and a non-linear synthesis transform (de-
coder). Some research works also explore the use of re-
current neural networks and long short-term memory net-
works for encoding and decoding to achieve smoother play-
back effectscite(Gregor et al. 2016). Meanwhile, some re-
search works use deep neural networks to predict the con-
tent of images and dynamically adjust the bit rate based on
the characteristics of the content. This method can achieve
more precise bit rate control, thereby further reducing the bit
rate while ensuring quality as a representative method using
RNN for image compression(Toderici et al. 2015), which
first used convolutional LSTM to achieve variable bit rate
end-to-end learning image compression. Based on scalable
neural networks, models (Yang et al. 2021) use subsets of
network parameters to control the bit rate. With the intro-
duction of transforms, vision transforms(Dosovitskiy et al.
2020) has also been applied to the field of image compres-
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Figure 2: Different attention modules

sion. For example, Swin transform is applied to their en-
coder, decoder, super-encoder, and super-decoder in(Zhu,
Yang, and Cohen 2021), achieving good results. Some re-
search also uses wavelet transform for video encoding and
decoding to achieve better video quality and compression
ratio. For example, IWAVE++(Ma et al. 2020)is a new end-
to-end optimized image compression scheme.

In learning-based decoders, context models are often
adopted. These decoders typically use deep learning tech-
niques to learn and predict the content of images or
videos. Context models(He et al. 2021)are used here to
help predict the next content of images or videos, there-
fore achieving more efficient and higher-quality compres-
sion and reconstruction. Channel-based conditional context
and residual prediction modules based on potential repre-
sentations(Minnen and Singh 2020) have been designed by
some works to optimize network architecture.

Overall, the development process of compression technol-
ogy is an ongoing process of optimization and improvement.
With the continuous development of technology, we can ex-
pect to see more innovations and improvements to achieve
higher quality and more efficient image compression.

Method
Formulation of Learned Compression Models
In the traditional encoding-decoding compression approach
(Goyal 2001), image compression can be formulated by (as
Fig. 1(a))

Y = ga(X)

Ŷ = q(Y )

X̂ = gs(Ŷ )

(1)

where X , X̂ , Y , and Ŷ are raw images, reconstructed im-
ages, a latent presentation before quantization, and com-
pressed codes, respectively. q represents the quantization
and entropy coding. An imageX is transformed into a latent
representation Y . Y is then quantized and entropy coded to
obtain the compressed bit stream Ŷ . When needed, Ŷ is de-
coded to obtain the recovered image X̂ .

The latest and most widely used image compression
framework in Fig. 1(b) (Ballé et al. 2018; Cheng et al. 2020;
Cui et al. 2021; Lee, Cho, and Beack 2018; Minnen, Ballé,
and Toderici 2018; Yang et al. 2021), which is based on the
traditional framework, consisting of an encoder ga, a de-
coder gs, a hyper encoder ha, and a hyper decoder hs.

Based on the traditional framework, an image X is trans-
formed into a latent representation Y and a hyper latent rep-

resentation Z sequentially by ga and ha.

Y = ga(X)

Z = ha(Y )
(2)

Using the factorized prior model, denoted by qf (·), Z is
digitized to Ẑ. From Ẑ, hs yields M and σ, which con-
tain the means and standard deviations of the elements in
Y , respectively. These elements are assumed to be indepen-
dent Gaussian random variables. Then, the mean-removed
(or centered) Yc = Y −M is quantized to

Ŷc = q(Yc) (3)

where rounding is used for the quantizer q(·). Finally, the
decoder gs adds M back to Ŷc to yield

Ŷ = Ŷc +M (4)

and uses Ŷ to reconstruct X̂ .

Network Architecture
Our network architecture has a similar structure as(Cheng
et al. 2019). We use residual blocks to increase the large
receptive field and improve the rate-distortion performance.
The Decoder side uses subpixel convolution instead of trans-
posed convolution as upsampling units to keep more details.
N denotes the number of channels and represents the model
capacity. We use the Gaussian mixture model, thus requiring
3×N ×K channels for the output of the auxiliary autoen-
coder.

Since the existing framework is already well-established
and incorporates a significant amount of information the-
ory knowledge, making modifications to it may be challeng-
ing. Therefore, we carefully analyze the existing encoder-
decoder architecture and identify areas where enhancements
can be made. In this paper, we focus on making modifica-
tions to the encoder ga and decoder gs components of the
framework. This approach allows us to build upon the exist-
ing framework while introducing novel contributions to the
specific components that we are modifying.

Furthermore, recent works use attention modules to im-
prove the performance of image restoration and compres-
sion. The proposed attention module is illustrated in (as
Fig. 2(a)), but very time-consuming for training. In Im-
age Compression, non-local blocks are often used to model
global contextual relationships to capture long-range depen-
dencies in images. Such a block introduces more computa-
tion overhead as it requires global operations on all loca-
tions in the image. In terms of context modeling, residual
blocks already provide a considerable perceptual domain in



the network architecture, so for some tasks, the non-local
block may appear redundant, and removing it can reduce the
computational burden. This is especially important in com-
pression tasks that require efficient training and inference,
as compression models need to remain efficient when pro-
cessing large amounts of image data. So, we simplify this
module by removing non-local blocks, since deep residual
blocks can already capture very large perceptual domains in
our network architecture.

A simplified attention module is shown in(as Fig. 2(b))
and can also reduce the loss with moderate complexity. At-
tention modules can help the networks to pay more attention
to challenging parts and reduce the bits of simple parts. Then
we insert a simplified attention module into the encoder net-
work (as Fig. 3).

Loss
Following the original framework, the loss function (Liu
et al. 2022) of our model is

L = R+ λ ∗ 2552 ∗ dMSE(x̂,x)

with dMSE (x̂,x) =
1

HW

H∑
i=1

W∑
j=1

(x̂i,j − xi,j)
2 (5)

where MSE means employing MSE as distortion metric,H
and W represent the height and width of the image, respec-
tively. R = Rŷ + Rẑ represents the total bitrate of ŷ and
ẑ.The regularization parameter λ is used to control the trade-
off between rate and distortion. In this work, the bitrate is
estimated by calculating entropy of ŷ and ẑ, which can be
formulated as:

Rŷ = −
∑
i

log2
(
pŷi|ẑi (ŷi | ẑi)

)
Rẑ = −

∑
i

log2
(
pẑi|ψi

(ẑi | ψi)
) (6)

By minimizing this loss function, our model aims to achieve
a balance between compression efficiency (rate) and recon-
struction quality (distortion).

Experiment
Dataset
The dataset used to train the model in this experiment comes
from the validation set of ImageNet 2010(Deng et al. 2009).
Since the training data for the input model requires the
same dimensions, 10,000 images with dimensions larger
than 256x256 were selected from this set. These images
were then divided into training and testing sets in an 8:2 ratio
for model training.

For the evaluation dataset, we primarily utilized the Ko-
dak dataset, which includes 24 images with dimensions of
768 x 512. Additionally, for comparison with our proposed
method, we employed datasets from CLIC and JPEG-AI,
containing 41 and 16 images, respectively, with resolutions
of up to 2K.
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Figure 4: Visualization of reconstructed image

Training Details
In our training process, we utilize the Adam optimizer with
a batch size of 32 and employ a strategy for dynamically ad-
justing the learning rate. Specifically, when the model’s loss
on the test set does not decrease for five consecutive rounds,
we reduce the learning rate by a factor of 0.1, aiming to care-
fully search for optimal model parameters in the later stages
of training. The initial learning rate is set to 0.0001. For data
augmentation during training, we apply random cropping to
the training set, while central cropping is used for the test
set. To prevent gradient explosions, we implement gradi-
ent clipping during the training process for gradient scaling.
To expedite the training speed, we adopt parallel training,
conducting model training on four NVIDIA GeForce RTX
3090 GPUs. Throughout the training process, we compare
the losses after each epoch and select the model weights
from the epoch with the minimal test set loss as our final
model.

Results of Experiment
We compared the performance of our model with previ-
ous end-to-end approaches, including the Gaussian mixture
model(Cheng et al. 2020), Ballé J et al.(Ballé, Laparra, and
Simoncelli 2016) utilized non-linear analysis transforms,
uniform quantizers and non-linear synthesis transforms to
create their model, achieving excellent results in image
compression. Additionally, Minnen et al. (Minnen, Ballé,
and Toderici 2018)proposed a novel algorithm composed of
analysis transform, uniform quantizer, and synthesis trans-
form.

We trained both the GMM and our proposed model on the
same dataset, using the same equipment and hyperparameter
settings. The results are depicted in (as Fig. 5. It can be ob-
served from the graph that our proposed model outperforms
the GMM in terms of train set loss and test set loss. As the
model continues to train, our proposed model demonstrates
a better reduction in test set loss. This improvement is at-
tributed to the attention mechanism we introduced, which
better captures compression details, and the residual con-
nections, which mitigate overfitting. The corresponding rate-
distortion points are depicted in(as Table. 1, to show the
coding gain of proposed approaches. It can be observed our
proposed approaches can improve the rate-distortion perfor-
mance regardless of the model capacity.

(a) Train Loss (b) Test Loss

Figure 5: Model Comparison

Table 1: RD point

Algorithm bpp MS-SSIM PSNR
ATC 0.560 0.983 30.26
Baseline 0.756 0.981 29.88

For the other two models, we directly utilized their pre-
trained parameters to compare them with our model in the
context of image compression evaluation. To demonstrate
the superiority of our approach, we visualized the recon-
structed images and presented a comparative analysis. (as
Fig. 4 illustrates the reconstructed image for the first picture
from jpeg-ai, with a close approximation of 0.17 bpp and
an approximate compression ratio of 200:1. Details in the
image indicate that our proposed model performs better in
preserving fine details compared to the original image.

Future Work
While our current network architecture is based on a well-
established framework, there is room for improving Net-
work Architecture. Investigating different residual block
structures or introducing skip connections can enhance the
model’s capability to capture complex image features effi-
ciently.

We can also find a way to enhance Loss Function. Future
work can focus on incorporating perceptual loss functions or
utilizing perceptual metrics such as SSIM or PSNR can en-
hance the preservation of important visual features and im-
prove the overall perceptual quality of reconstructed images.

While our current framework primarily focuses on image
compression, extending the model to different data domains



is an intriguing avenue for future research.

Conclusion
We use a learned image compression approach using a dis-
cretized Gaussian mixture of likelihoods and attention mod-
ules. Our contribution is to utilize a simplified attention
module with moderate complexity in our network architec-
ture to achieve high coding efficiency.

Our model exhibits a more substantial reduction in test
set loss, indicative of its superior ability to capture com-
pression details. The results affirm that our approach consis-
tently improves rate-distortion performance across various
model capacities, showcasing its versatility and effective-
ness. Visualization of the reconstructed images with a close
approximation of 0.17 bpp and an approximate compression
ratio of 200:1, further supports the superiority of our pro-
posed model. Moreover, from the experimental results, our
experiments surpass some previous ones. The superiority of
our proposed model is clearly evident from the visualiza-
tion of compressed images. Additionally, from the RD point
table, our experiments also show good performance. How-
ever, compared to the latest work in the field of image com-
pression, our designed model still has some shortcomings.
We believe our approach contributes valuable insights to the
field of image compression and opens avenues for further
exploration and refinement of end-to-end approaches.
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